

Industrial Water Recycling - Challenges and Limitations

Department of Environmental Technology

Prof. Dr.-Ing. Sven-Uwe Geissen

Wastewater = Waste

Yes!

- 1. Wastewater contains recalcitrant and hazardous substances even after treatment
 - → heavy metals, salts, COD composition?
- 2. Generates costs
- 3. Generates energy consumption

 Wastewater contains recalcitrant and hazardous substances even after treatment

Removal by oxidation, adsorption, membrane filtration or advanced biological processes

Ozone generator

Example: White Rot Fungi

- The primary decomposer of lignin in the ecosystem.
 - Lignin is hardly biodegradable by other microorganisms.
- Unique lignin degrading enzymes
 - lignin peroxidase, manganese peroxidase, laccase.
- Degradation of recalcitrant pollutants.
 - PAH, chlorophenols, dyes, pesticides and some emerging pollutants like diclofenac, ibuprofen, EE2, etc.
- The enzymes can be produced under nutrient limited conditions

Example: White Rot Fungi

- Diclofenac as a pollutant example
 - A widely detected PhAC. Low removal in STP.
 - Complete elimination by LiP (acidic condition, proper H₂O₂)

Wastewater = Waste

2. Generates costs

Example Brewery:

4 hL fresh water/hL SB incl. 2.5 hL wastewater/hL

Production capacity: 1 Mio hL/a \rightarrow 250,000 m³ wastewater/a

Water purchase and wastewater treatment costs in Germany:

4 €/m³ → **1 Mio. €**a

3. Generates energy consumption

Carbon concentration: 1.5 g DOC/L → 375 t DOC/a

Aerobic treatment:

500 t/a O_2 for aeration \rightarrow 2 kg O_2 /kWh

 \rightarrow 250,000 kWh/a (3% of brewery consumption)

Wastewater = Waste

No!

Wastewater contains

1. Water

- 2. Valuables
- 3. Chemical Energy & Heat

1. Water

- Reclaimed water volume about 2.2 billion m³/a (2001/2002, Worldbank)
- Israel, Australia and Tunisia will use reclaimed water to satisfy 25, 11 and 10 % of their water demand (Lazarova et al.)
- Middle East countries are planning to reuse 50 to 70 % of waste water

– And Industry?

Development of the water use in German paper industry (Pfaff, Dietz, Götz)

Water Use of Chemical Industry Park Marl, Germany

Development of water use in breweries

Source: Schu, Stolz, Jordan: Brauwelt Nr. 26 (1999)

∠ approx. 1 hl/hl SB reduction for large breweries
 2.5 hl/hl discharged

Data: Nieroda: Deutscher Brauer Bund e.V, Evaluation 2007, 94 Breweries

Industrial Water recycling Yatala Brewery, Australia

www.goldcoast.qld.gov.au/attac hment/edmp/is3 fosters.pdf

- Reuse for non-product related applications
 external keg washing, washdown hoses, cooling towers and boilers, toilet flushing, vacuum pumps
- 2.2 hL water used/hL SB beer <u>www.fosters.com.au/about/water.htm</u> and http://www.sirfrt.com.au/sirf_pages/download.php?id=126
- 0.9 hL wastewater/hL SB beer http://www.sirfrt.com.au/sirf pages/download.php?id=126

→ Reduction of water use by approx. 45 %

Industrial Water recycling Yatala Brewery, Australia

www.goldcoast.qld.gov.au/attac hment/edmp/is3 fosters.pdf

4,000 m³/d Reverse Osmosis www.osmoflo.com/project/15/Polishing-of-process-wastewater-enabling-reuse.aspx

Industrial Water recycling

process-wastewater-enabling-reuse.aspx

Industrial Water recycling

www.osmoflo.com/project/15/Polishing-ofprocess-wastewater-enabling-reuse.aspx

- → Water recycling is feasible even in sensitive industries
- → Membrane processes are applicable for water recycling, but disadvantages have to be considered
- Production integrated technologies will increase the efficiency of water recycling

2. Valuables

Olive Mill Wastewater (OMW)

Reduced anaerobic degradability due to high concentration of polyphenols:

- e.g. 1-3.5 kg Hydroxytyrosol per m³ Wastewater Price approx. 50 € per g
 - → Selective separation of polyphenols

Wastewater = Valuables

Olive Mill Wastewater, Tunisia 2005

Polyphenol uptake by different sorption materials

→ Selective uptake is possible but requires multi-step treatment

3. Heat & Energy

Chemical energy (brewery effluent)

2.5 hL wastewater/hL SB \rightarrow 250,000 m³/a

 $DOC = 1.5 \text{ g/L} \rightarrow 375 \text{ t } DOC/a$

Anaerobic treatment

Removal eff.: 80%, Biogas production: approx. 0.75 kWh/kg DOC_{elim.}

225,000 kWh/a ≈ 21,000 L fuel oil/a (1.2% of brewery consumption)

+ energy savings against aerobic processes

Under development: e.g. H₂ production, Algae, Bio-Fuelcell

3. Heat & Energy

- Heat energy (brewery effluent)
 - 1 Mio. hL sales beer (SB) per year
 - 4 hL fresh water/hL SB
 - 2.5 hL wastewater/hL SB → 250,000 m³/a

Well water ≈ 12°C → wastewater ≈ 30 °C

 $\Delta Q = 5.2$ Mio. kWh/a ≈ 0.5 Mio. L fuel oil/a (28 % brewery consumption)

→ Water recycling reduces energy demand for heating

Note: efficiencies of heating and heat transfer are not considered

"Zero-discharge" corrugated card board industry

E4Water: concept & route to breakthrough in industrial water management

E4Water
Economically
and
Ecologically
Efficient Water
Management in
the European
Chemical
Industry
EC FP7

Achemasia 2010 21

Chances

Limitations

 Process optimization saves water

Management tools have to be applied

Valuables can be extracted

- Cost effective selective separation technologies
- 3. Wastewater recycling recovers water and heat
- Applications limited

- Production integrated technologies will decrease the costs
- Implementation necessary

